Braided Geometry and the Inductive Construction of Lie Algebras and Quantum Groups
نویسنده
چکیده
Double-bosonisation associates to a braided group in the category of modules of a quantum group, a new quantum group. We announce the semiclassical version of this inductive construction.
منابع مشابه
Braided Lie Bialgebras
We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...
متن کاملInstitute for Mathematical Physics Duality Principle and Braided Geometry Duality Principle and Braided Geometry
We give an overview of a new kind symmetry in physics which exists between observables and states and which is made possible by the language of Hopf algebras and quantum geometry. It has been proposed by the author as a feature of Planck scale physics. More recent work includes corresponding results at the semi-classical level of Poisson-Lie groups and at the level of braided groups and braided...
متن کاملDuality Principle and Braided Geometry
We give an overview of a new kind symmetry in physics which exists between observables and states and which is made possible by the language of Hopf algebras and quantum geometry. It has been proposed by the author as a feature of Planck scale physics. More recent work includes corresponding results at the semiclassical level of Poisson-Lie groups and at the level of braided groups and braided ...
متن کاملDuality Principle and Braided Geomerty
We give an overview of a new kind symmetry in physics which exists between observables and states and which is made possible by the language of Hopf algebras and quantum geometry. It has been proposed by the author as a feature of Planck scale physics. More recent work includes corresponding results at the semiclassical level of Poisson-Lie groups and at the level of braided groups and braided ...
متن کاملBraided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras
Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras. Abstract We show that if g Γ is the quantum tangent space (or quantum Lie algebra in the sense of Woronowicz) of a bicovariant first order differential calculus over a co-quasitriangular Hopf algebra (A, r), then a certain extension of it is a braided Lie algebra in the category of A-comodules. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996